СТАТЬИ АРБИР
 

  2018

  Декабрь   
  Пн Вт Ср Чт Пт Сб Вс
26 27 28 29 30 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
   

  
Логин:
Пароль:
Забыли свой пароль?


Анализ алгоритма роя жуков светляков


АНАЛИЗ АЛГОРИТМА РОЯ ЖУКОВ СВЕТЛЯКОВ

В данной статье произведен анализ метаэвристического алгоритма роя жуков светляков. Алгоритм которого был разработан Кришнанандом(Krishnanand) и Госе (Ghose). Реализация алгоритма была произведена на языке Java. Реализованный алгоритм имеет графический интерфейс и несколько вариантов целевой функции. В ходе работы были использованы исследования различных авторов, находящиеся в свободном доступе.

Ключевые слова: популяционные алгоритмы, оптимизация, фитнесс функция, люциферин

Сегодня, популяционные алгоритмы вызывают все больший интерес. Эти алгоритмы находят широкое практическое применение. Самый яркий пример - это искусственный интеллект. Каждый агент движется не по отдельному правилу, а по правилам всего роя.

В данной работе уделяется внимание рассмотрению алгоритма роя жуков - светляков (glowworm swarm optimization). Идея указанного алгоритма предложена Кришнанадом (Krishnanand) и Госе(Ghose).Как и в светлячковом алгоритме[1 - с. 29], менее яркий жук - светляк перемещается к более яркому.

Алгоритм состоит из двух фаз: модификации количества люциферина и движения. В течение движения каждый жук - светляк полагается только на локальную информацию[2 - с. 269]. На заключительных итерациях множество жуков - светляков сходится к одному или нескольким оптимумам. Весь алгоритм состоит из нескольких этапов.

Один из наиболее важных - это модификация количества люциферина. Ведь он является решающим фактором в движения светляков. [3 - с. 1]

Исходные параметры алгоритма задаются программно внутри кода. Остальные же части, считаются и выводятся на экран пользователя. Особенностью данного программного продукта, является графическое представление каждой итерации всего алгоритма. В качестве примера были взяты две функции f(x) = sin х и f(x) = -2x 2 11 x - 9. На Рис. 1 представлен результат работы программы с функцией f(x) = sin х . На графике видно, что не все агенты добрались до экстремума, а результатом является агент который приблизился ближе всех к максимуму функции.

ЯучшиЯ . 7.87М4551Л?6Я4«

Рис. 1 - Результаты исследования функции Дх) = sin х

Подобный результат можно увидеть и на функции fx) = -2x 2 11 x - 9 - Рис. 2. Где положение агентов на графике отображено в качестве зеленых кружков.

Рис. 2 - Результаты исследования функции fx) = -2x 2 11 x - 9

В заключении можно сказать, что интерес к роевым алгоритмам будет продолжать расти. Так как при правильно подобранных параметрах его точность может быть очень высокой, что подойдет для задач глобальной оптимизации.

Список использованной литературы

Метаэвристики: монография / Ю.А. Скобцов, Е.Е. Федоров. Донецк: Изд - во «Ноулидж» (Донецкое отделение), (2013).

Современные Алгоритмы Поисковой Оптимизации: Алгоритмы, вдохновленные природой / А.П. Карпенко. Москва: Издательство МГТУ им. Н.Э. Баумана,(2014).

Научно - методический электронный журнал «Концепт». - 2016. - Т. 11. - С. 3646¬3650. - URL: http: // e - koncept.ru / 2016 / 86767. htm.

С.А. Пивоваров, Л.Л. Романов, А.С. Лазарев, 2017

УДК 004.023


С.А. Пивоваров Студент Факультета Информационных Технологий и Управления «Южно - Российский государственный политехнический университет (НПИ) имени М.И. Платова», г. Новочеркасск Л.Л. Романов Студент Факультета Информационных Технологий и Управления «Южно - Российский государственный политехнический университет (НПИ) имени М.И. Платова», г. Новочеркасск А.С. Лазарев Магистр Факультета Информационных Технологий и Управления «Южно - Российский государственный политехнический университет (НПИ) имени М.И. Платова», г. Новочеркасск





МОЙ АРБИТР. ПОДАЧА ДОКУМЕНТОВ В АРБИТРАЖНЫЕ СУДЫ
КАРТОТЕКА АРБИТРАЖНЫХ ДЕЛ
БАНК РЕШЕНИЙ АРБИТРАЖНЫХ СУДОВ
КАЛЕНДАРЬ СУДЕБНЫХ ЗАСЕДАНИЙ

ПОИСК ПО САЙТУ