Искусственная нейронная сеть может рассматриваться как направленный граф со взвешенными связями, в котором искусственные нейроны являются узлами. По архитектуре связей нейронные сети могут быть сгруппированы в два класса (рис. 1) – сети прямого распространения, в которых графы не имеют петель, и рекуррентные сети, или сети с обратными связями. В наиболее распространенном семействе сетей первого класса, называемых многослойным персептроном, нейроны расположены слоями и имеют однонаправленные связи между слоями.
На рис. 1 представлены типовые сети каждого класса. Сети прямого распространения являются статическими в том смысле, что на заданный вход они вырабатывают одну совокупность выходных значений, не зависящих от предыдущего состояния сети. Рекуррентные сети являются динамическими, так как в силу обратных связей в них модифицируются входы нейронов, что приводит к изменению состояния сети.
Рис. 1. Систематизация архитектур нейронных сетей
Наиболее популярный класс многослойных сетей прямого распространения образуют многослойные персептроны, в которых каждый вычислительный элемент использует пороговую или сигмоидальную функцию активации. Многослойный персептрон может формировать сколь угодно сложные границы принятия решения и реализовывать произвольные булевы функции. Разработка алгоритма обратного распространения для определения весов в многослойном персептроне сделала эти сети наиболее популярными у исследователей и пользователей нейронных сетей.
Сети, использующие радиальные базисные функции (RBFсети), являются частным случаем двухслойной сети прямого распространения. Каждый элемент скрытого слоя использует в качестве активационной функции радиальную базисную функцию типа гауссовой. Радиальная базисная функция (функция ядра) центрируется в точке, которая определяется весовым вектором, связанным с нейроном. Как позиция, так и ширина функции ядра, должны быть обучены по выборочным образцам. Обычно ядер гораздо меньше, чем обучающих примеров. Каждый выходной элемент вычисляет линейную комбинацию этих радиальных базисных функций. С точки зрения задачи аппроксимации скрытые элементы формируют совокупность функций, которые образуют базисную систему для представления входных примеров в построенном на ней пространстве.
Существует множество спорных вопросов при проектировании сетей прямого распространения – например, сколько слоев необходимы для данной задачи, сколько следует выбрать элементов в каждом слое, как сеть будет реагировать на данные, не включенные в обучающую выборку (какова способность сети к обобщению), и какой размер обучающей выборки необходим для достижения «хорошей» способности сети к обобщению.
Хотя многослойные сети прямого распространения широко применяются для классификации и аппроксимации функций, многие параметры еще должны быть определены путем проб и ошибок. Существующие теоретические результаты дают лишь слабые ориентиры для выбора этих параметров в практических приложениях.
Самоорганизующиеся карты Кохонена (SOM) обладают благоприятным свойством сохранения топологии, которое воспроизводит важный аспект карт признаков в коре головного мозга высокоорганизованных животных. В отображении с сохранением топологии близкие входные примеры возбуждают близкие выходные элементы. Основная архитектура сети SOM Кохонена представляет собой двумерный массив элементов, причем каждый элемент связан со всеми n входными узлами.
Дилемма стабильности-пластичности является важной особенностью обучения методом соревнования. Как обучать новым явлениям (пластичность) и в то же время сохранить стабильность, чтобы существующие знания не были стерты или разрушены?
Карпентер и Гроссберг, разработавшие модели теории адаптивного резонанса (ART1, ART2 и ARTMAP)1, сделали попытку решить эту дилемму. Сеть имеет достаточное число выходных элементов, но они не используются до тех пор, пока не возникнет в этом необходимость. Будем говорить, что элемент распределен (не распределен), если он используется (не используется). Обучающий алгоритм корректирует имеющийся прототип категории, только если входной вектор в достаточной степени ему подобен. В этом случае они резонируют. Степень подобия контролируется параметром сходства k, 0 < k < 1, который связан также с числом категорий. Когда входной вектор недостаточно подобен ни одному существующему прототипу сети, создается новая категория, и с ней связывается нераспределенный элемент со входным вектором в качестве начального значения прототипа. Если не находится нераспределенного элемента, то новый вектор не вызывает реакции сети.
Чтобы проиллюстрировать модель, рассмотрим сеть ART1, которая рассчитана на бинарный (0/1) вход. Упрощенная схема архитектуры ART1 представлена на рис. 2. Она содержит два слоя элементов с полными связями.
Направленный сверху вниз весовой вектор wj соответствует элементу j входного слоя, а направленный снизу вверх весовой вектор i связан с выходным элементом i; i является нормализованной версией wi. Векторы wj сохраняют прототипы кластеров. Роль нормализации состоит в том, чтобы предотвратить доминирование векторов с большой длиной над векторами с малой длиной. Сигнал сброса R генерируется только тогда, когда подобие ниже заданного уровня.
Модель ART1 может создать новые категории и отбросить входные примеры, когда сеть исчерпала свою емкость. Однако число обнаруженных сетью категорий чувствительно к параметру сходства.
Следующий класс сетей – это сети Хопфилда. Хопфилд использовал функцию энергии как инструмент для построения рекуррентных сетей и для понимания их динамики. Формализация Хопфилда сделала ясным принцип хранения информации как динамически устойчивых аттракторов и популяризовала использование рекуррентных сетей для ассоциативной памяти и для решения комбинаторных задач оптимизации.
Динамическое изменение состояний сети может быть выполнено, по крайней мере, двумя способами: синхронно и асинхронно. В первом случае все элементы модифицируются одновременно на каждом временном шаге, во втором – в каждый момент времени выбирается и подвергается обработке один элемент. Этот элемент может выбираться случайно. Главное свойство энергетической функции состоит в том, что в процессе эволюции состояний сети согласно уравнению она уменьшается и достигает локального минимума (аттрактора), в котором она сохраняет постоянную энергию.
Ассоциативная память обычно работает в двух режимах: хранения и восстановления. В режиме хранения веса связей в сети определяются так, чтобы аттракторы запомнили набор p nмерных образцов {x1, x2, …, xp}, которые должны быть сохранены. Во втором режиме входной пример используется как начальное состояние сети, и далее сеть эволюционирует согласно своей динамике. Выходной образец устанавливается, когда сеть достигает равновесия.
В заключение следует отметить, что структура нейронных сетей тесно связана с используемыми алгоритмами обучения. Как видно из вышеописанного, можно выделить три фундаментальных класса нейросетевых архитектур:
- однослойные сети прямого распространения;
- многослойные сети прямого распространения;
- рекуррентные сети.
Данные классы архитектур используются автором при разработке механизмов и алгоритмов решения векторной задачи управления и планирования производством.
Прим.
1 Carpenter, G. A. Pattern Recognition by SelfOrganizing Neural Networks [Text] / G. A. Carpenter, S. Grossberg. Cambridge : MIT Press, 1991; Haykin, S. Neural Networks : A Comprehensive Foundation [Text] / S. Haykin. NY : MacMillan College Publishing Co., 1994.
Е. Ю. Виноградова
Уральский государственный экономический университет (Екатеринбург)
Материалы I Международной научно-практической конференции (Екатеринбург, 25–26 января 2011 г.) "Интеграция науки, образования и производства – стратегия развития инновационной экономики"
Количество показов: 3371